

Contents

Why VELUX skylights

Page

- 1 The VELUX House
- 2 The logical choice for any skylight installation
- 4 Choosing the right glass

Products

- 6 Solar Powered "Fresh Air" Skylights
- 10 Electric "Fresh Air" skylights
- 14 Manual "Fresh Air" skylights
- 18 Fixed skylights
- 24 Self-flashed skylights
- 28 Special order blinds
- 32 Roof windows
- 40 Three layers of protection warranty
- 42 Deck mounted flashing systems
- 43 Curb mounted flashing systems
- 44 Skylight accessories
- 46 SUN TUNNEL™ skylights
- 51 SUN TUNNEL™ skylight accessories

Testing data

- 54 How to order
- 56 Testing data

The VELUX House

The possibilities are endless

The flat glass, low profile SUN TUNNEL™ skylight creates a sleek look on any roofline and is perfect for those developments where local ordinances do not allow domed skylights.

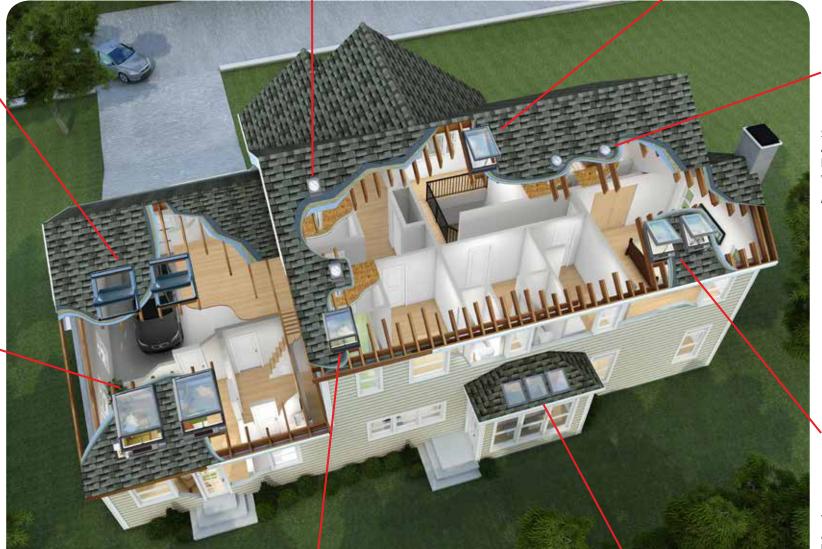
Page 48

The electric "Fresh Air" models feature pre-mounted Pick&Click!™ system brackets, making installation of sunscreen blinds a snap. A single hard wire connects to a standard junction box.

Pages 10-13

Roof windows are perfect for upper floor bonus rooms where they will be within reach for easy opening. Features include a sash that rotates inward for easy cleaning from the inside and a ventilation flap that allows for fresh air circulation when the window is closed.

Pages 32-39



Eligible for a 30%
Federal tax credit
Receive an average of \$850* on product and

The Solar Powered "Fresh Air" Skylight features a solar panel that charges an internal battery and control system. The skylight is remote controlled and solar powered, which means it requires no additional wiring, making for easy and cost effective installation. An integrated rain sensor closes the unit in case of rain and it is a No Leak Skylight, with our 3 layers of water protection, covered by our 10-year installation warranty.

Pages 6-9

SUN TUNNEL™ skylights are a great way to bring natural light into areas where a window may be impractical.

Pages 46-50

The Solar Powered "Fresh Air" Skylight is available for both deck mounted and curb mounted applications.

Pages 6-9

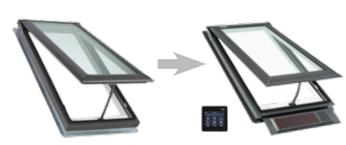
The manual "Fresh Air" skylights open and close using a control rod that operates a smooth turning handle when the skylight is out of reach.

Pages 14-17

Our fixed skylights feature a prefinished white wood frame and protective aluminum or copper cladding. The streamlined exterior profile does not obstruct your roofline.

Pages 18-23

The logical choice for any skylight installation


See how easy it is to upgrade to a Solar Powered "Fresh Air" Skylight

If you are considering adding daylight to your home, see how easy it is to add daylight and fresh air. With a 30% federal tax credit homeowners will receive an average of \$850* with federal tax credit eligibility which makes this product very affordable.

Considering just a fixed skylight?

Upgrade from a fixed skylight to a Solar Powered "Fresh Air" Skylight with all the features for around \$100 after tax credit eligibility!*

Manual "Fresh Air" skylight

Solar Powered "Fresh Air" Skylight

Considering just a fresh air skylight?

Upgrade from a manual "Fresh Air" Skylight to a Solar Powered "Fresh Air" skylight with all the features and save around \$140 after tax credit eligibility!*

* For more information visit: veluxusa.com/taxcredits

Clean, Quiet & Safe glass

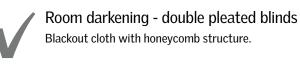
Features Neat® glass coating to keep your skylight cleaner, longer, leaving skylights virtually spotless

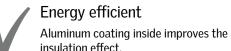
The No Leak Skylight No Leak Promise No Worries

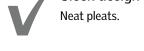
Reduce unwanted outside noise by up to 25% less than a standard double pane glass, and up to 50% less than a plastic skylight

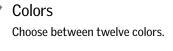
VELUX recommends and building codes require laminated glass for out of reach applications

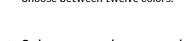
Intelligent touch remote control powered by VELUX INTEGRA®

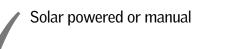

Included with your skylight is the Intelligent touch remote control powered by VELUX INTEGRA®. With the touchsensitive screen and easily-understood icons, programing skylights has become simpler than ever.






Make your home more energy efficient with VELUX room darkening - double pleated blinds. The blackout cloth with honeycomb structure and an aluminum coating inside improves the insulation effect of the window as well as the indoor climate all year round. The sleek design with neat pleats makes it an attractive blind for any room. The only blind that offers blackout, privacy and insulation all-in-one.





Federal tax credit on solar powered bline

Choosing the right glass

Clean, Quiet & Safe glass - Recommended for out of reach applications

Tempered glass (xx05)

Clean, Quiet & Safe glass (xx04) Dual pane laminated glass Standard on: VSS, VCS, VSE, VCE skylights

Clean, Quiet & Safe glass also available in the following options:

Impact (xx06) Available on: VSS, VSE, VCS, VCE, VS, VCM, FS, FCM, OPF Miami-Dade (xx07) Available on: FCM

White laminated (xx08) Available on: VSE, VCE, VS, VCM, FS, FCM, QPF

Snowload (xx10) Available on: VSE, VCE, VS, VCM, FS, FCM

Clean

Silicon dioxide makes Neat® glass exceptionally smooth. In fact, it's much smoother than ordinary glass. So water disperses evenly, "sheets off" and evaporates quickly, greatly reducing water spotting.

Titanium dioxide reacts chemically with the sun's UV rays, causing organic materials that are on the glass to decompose. It works even on cloudy days, as 80 percent of UV radiation gets through cloud cover. Then when it rains, the decomposed dirt is rinsed away, leaving the glass almost spotless. Result? Homeowners can spend less time washing windows and more time enjoying the view.

When Neat® is applied to LoE glass, it combines the ultimate in low maintenance with the best energy-conserving LoE glass on the planet. So homes stay warmer in winter, cooler in summer. Neat® LoE conserves energy year-round, too, saving homeowners up to 25 percent annually.

Ouiet

Reduce unwanted outside noise by up to 25% less than a standard double pane glass, and up to 50% less than a plastic skylight

Safe

VELUX recommends and building codes require laminated glass for out of reach applications

Choosing the right glass

Tempered glass - Recommended for in reach applications

Tempered glass (xx05)

If your skylight is within reach, our tempered glass consists of a dual pane, triple-coated with LoE3, dual-sealed and injected with argon gas. This provides excellent energy efficiency and thermal performance for year round comfort.

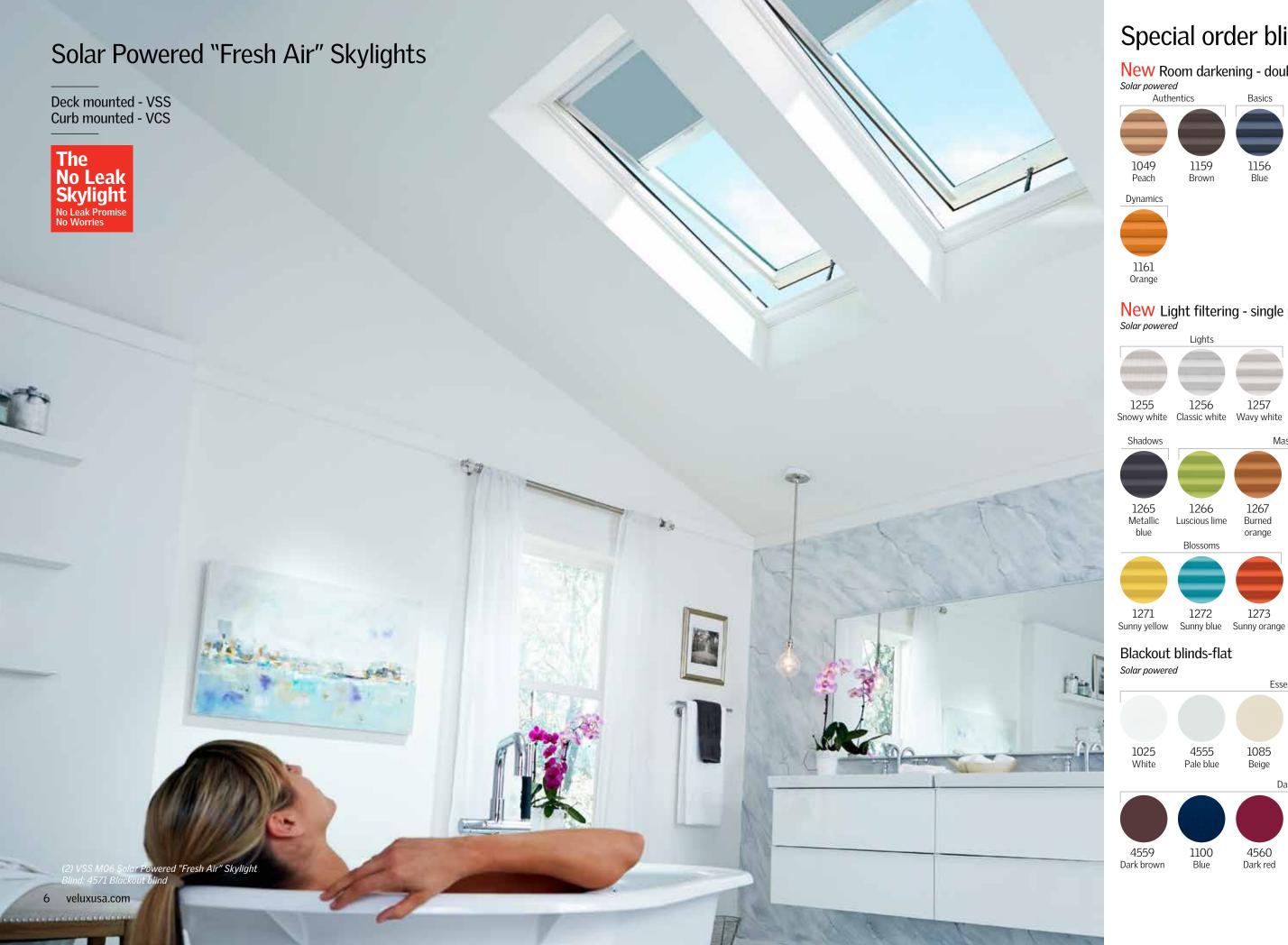
Dual pane laminated alass

ENERGY STAR®

Use of ENERGY STAR® products

One of the most straightforward ways to meet the energy codes as a builder or as an architect while still designing bright, airy buildings is to use ENERGY STAR® certified products.

Most VELUX products are ENERGY STAR® certified in all 50 states, which means that they meet strict energy efficiency standards set by the Environmental Protection Agency (EPA). ENERGY STAR® fenestration products must have their U-factor, Visible Transmittance, and Solar Heat Gain Coefficient tested and certified by the National Fenestration Rating Council (NFRC) in order to qualify.


By specifying or using ENERGY STAR® products, architects and builders can use more windows and skylights, bring more daylight and much needed fresh air inside. Create more attractive buildings and more livable spaces while still meeting the local energy codes economically.

In warmer climates, there is great potential for lighting energy savings using emerging control technologies in combination with more effective daylighting products like VELUX skylights and SUN TUNNEL™ skylights.

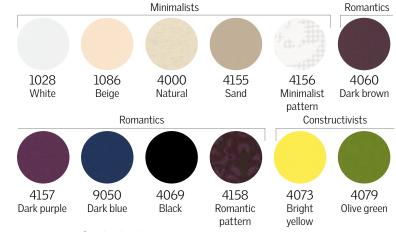
Visit: energystar.gov for more information.

New Room darkening - double pleated blinds

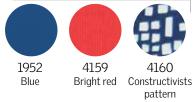
Authentics 1049 Peach Raspberry Yellow

New Light filtering - single pleated blinds

Blackout blinds-flat


Blackout blinds-flat (cont.)

Solar powered



Vegetals

Light filtering blinds-flat

Factory installed blinds

Ten factory installed blinds are available to include in the purchase of your skylight. The blind uses its own independent, built-in solar panel and power

In-stock Room darkening - double pleated blinds

In-stock light filtering - single pleated blinds (Solar powered)

FS01 FS31 Classic sand Misty brown Lovely latte

Federal tax credit on solar powered blinds*

^{*} For more information visit: veluxusa.com/taxcredits

Clean, Quiet & Safe glass

All VSS and VCS skylights come standard with Clean, Quiet & Safe glass.

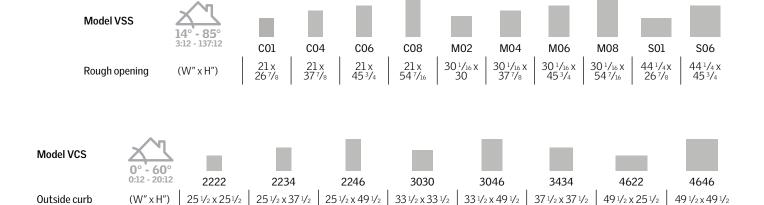
Intelligent touch remote control

Included with your skylight is the Intelligent touch remote control powered by VELUX INTEGRA®. Comes with pre-programmed settings for ease

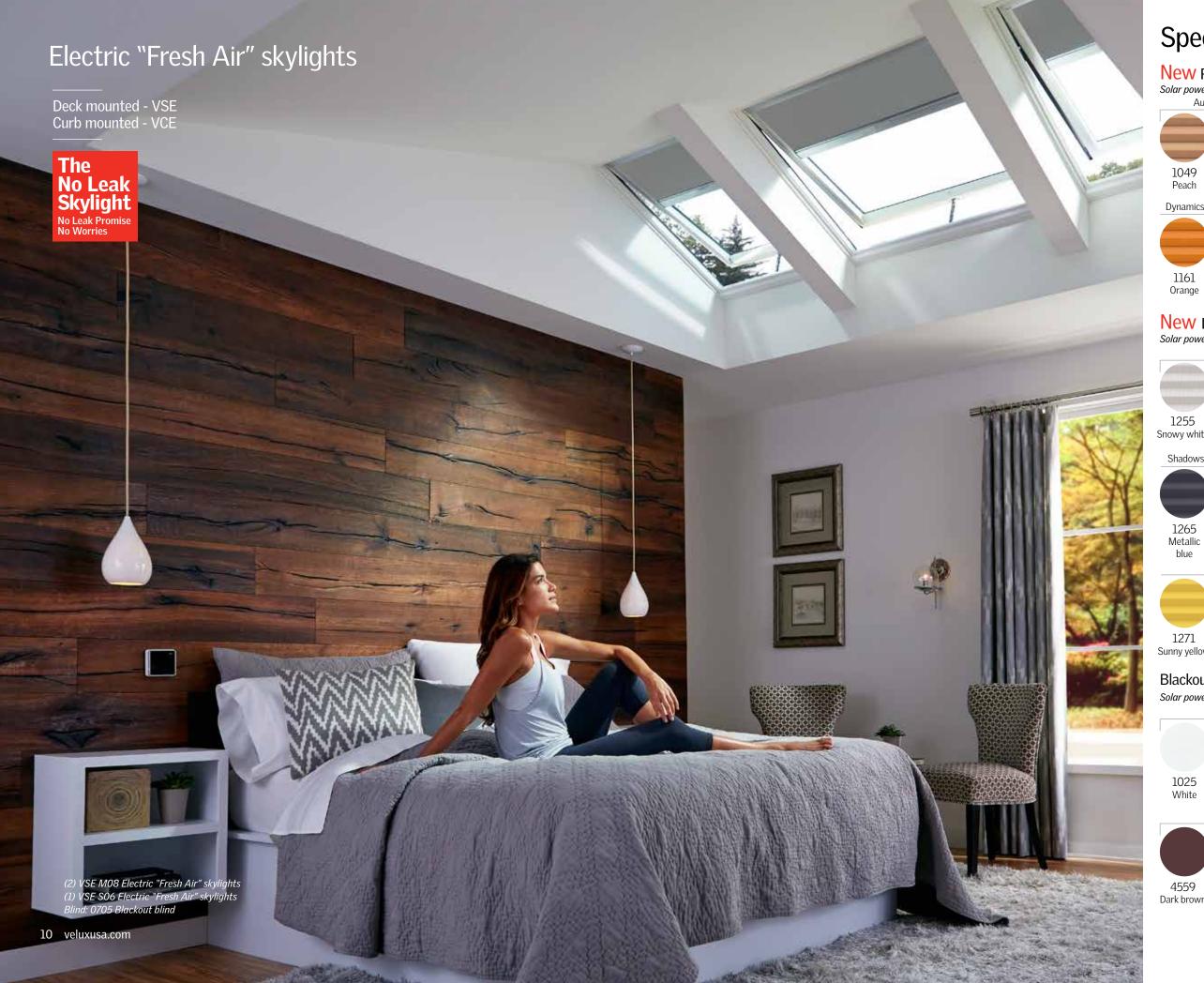
Note: Special order blinds ship separately from your skylight and please allow 2 weeks for delivery. *For more information visit: veluxusa.com/taxcredits

Solar Powered "Fresh Air" Skylights

Deck mounted - VSS Curb mounted - VCS



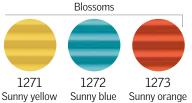
Benefits:


- With a 30% federal tax credit homeowners will receive an average of \$850* with federal tax credit eligibility which makes this product very affordable.
- Features a solar panel that captures any available daylight and uses it to recharge a highly efficient, fully concealed battery powered operator
- Replace a fixed or manual skylight easily because no wiring is required.
- Available in deck and curb mounted applications.

^{*}For more information visit: veluxusa.com/taxcredits

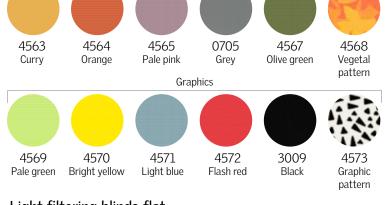
Please reference the price list for a full description of all sizes and glass options.

New Room darkening - double pleated blinds


Authentics Peach Raspberry Cherise Yellow

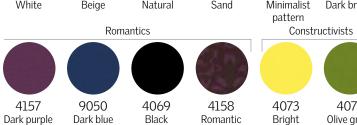
New Light filtering - single pleated blinds

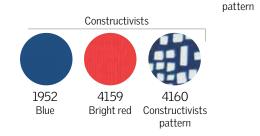
orange



Blackout blinds-flat

Blackout blinds-flat (cont.)


Solar powered



Vegetals

Light filtering blinds-flat

Romantics 4000 4156 4060 1086 4155 Minimalist Dark brown Beige Natural Sand pattern

stripes

Factory installed blinds

Ten factory installed blinds are available to include in the purchase of your skylight. The blind uses its own independent, built-in solar panel and power system.

In-stock Room darkening - double pleated blinds (Solar powered)

In-stock light filtering - single pleated blinds (Solar powered)

FS00 FS01 FS31 FS32 White Classic sand Misty brown Lovely latte Federal tax credit on solar powered blinds

Available in Room darkening - double pleated blinds,

* For more information visit: veluxusa.com/taxcredits

4079

Olive green

Shadows

Clean, Quiet & Safe glass

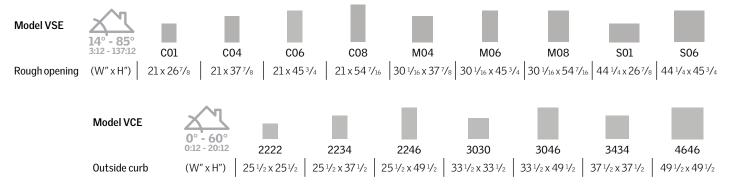
All VSE and VCE skylights come standard with Clean, Quiet & Safe glass.

Intelligent touch remote control

Included with your skylight is the Intelligent touch remote control powered by VELUX INTEGRA®. Comes with pre-programmed settings for ease

Note: Special order blinds ship separately from your skylight and please allow 2 weeks for delivery. *For more information visit: veluxusa.com/taxcredits

Electric "Fresh Air" skylights


Deck mounted - VSE Curb mounted - VCE

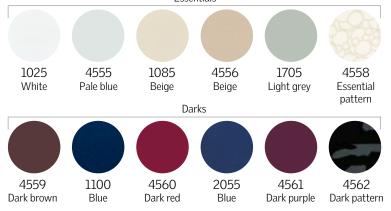
Benefits:

- A pre-installed concealed motor and control system powered by VELUX INTEGRA®, allows you to enjoy one-touch convenience of a remote control.
- With the integrated rain sensor, electric skylights will close automatically in case of inclement weather.
- Pre-mounted Pick&Click!™ system brackets make the installation of sunscreen blinds a snap.
- Factory pre-finished white frames and sashes provide for a high quality finish that eliminates the need for secondary high cost trips by a painter.

Please reference the price list for a full description of all sizes and glass options.


New Room darkening - double pleated blinds

Authentics 1049 Raspberry Yellow

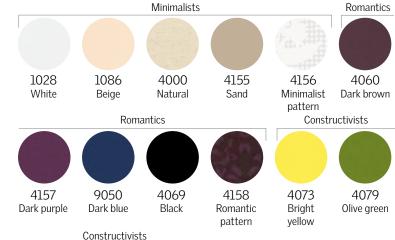

New Light filtering - single pleated blinds

Solar powered or manual

Blackout blinds-flat

Solar powered or manual

Blackout blinds-flat (cont.)


Solar powered or manual

Vegetals

Light filtering blinds-flat

Solar powered or manual

Venetian blinds

Manual only

Passionate red Wenge wood

Note: Special order blinds ship separately from your skylight and please allow 2 weeks for delivery. *For more information visit: veluxusa.com/taxcredits

Factory installed blinds

Ten factory installed blinds are available to include in the purchase of your skylight. The solar powered blind uses its own independent, built-in solar panel and power system.

In-stock Room darkening - double pleated blinds (Solar powered/manual)

In-stock light filtering - single pleated blinds (Solar powered/manual)

In-stock venetian blind (VS only) (Manual)

PA00

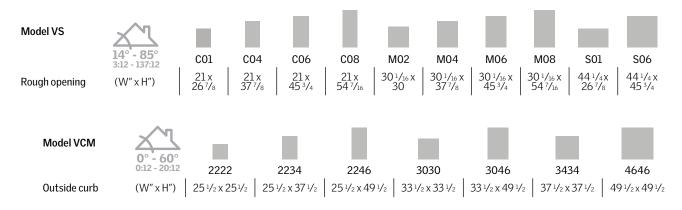
Federal tax credit on solar powered blinds

* For more information visit: veluxusa.com/taxcredits

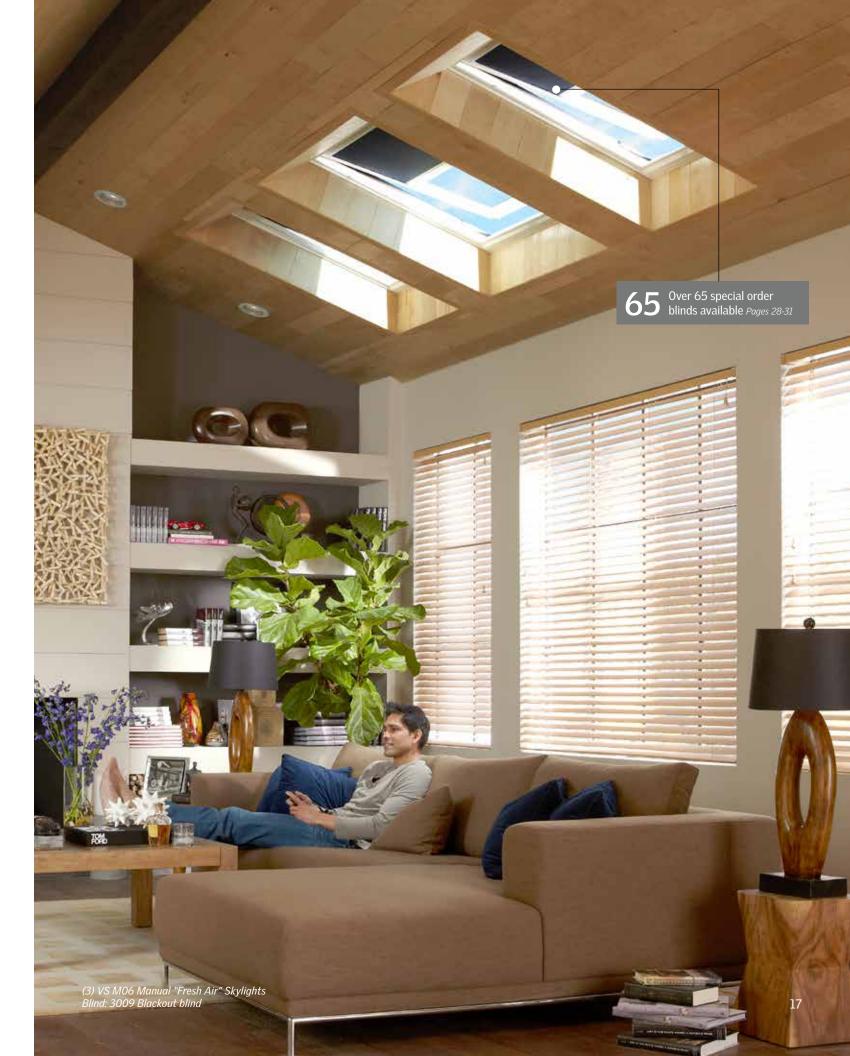
Convenient manual control

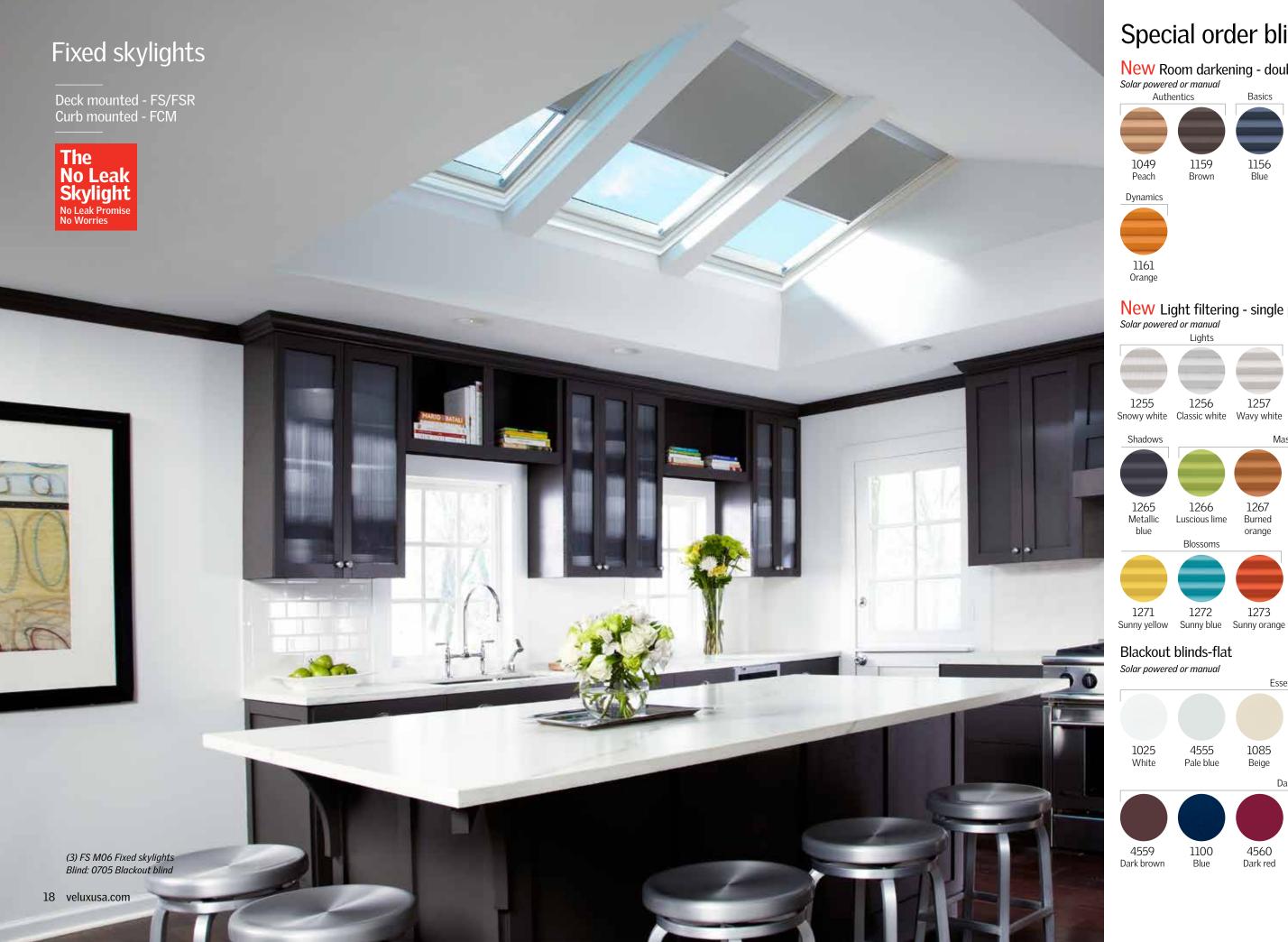
A control rod can be used when skylights are out

Manual "Fresh Air" skylights


Deck mounted - VS Curb mounted - VCM

No Leak Warranty For complete information visit thenoleakskylight.com **VELUX** flashing required.




Benefits:

- Factory pre-finished white frames and sashes provide for a high quality finish that eliminates the need for secondary high
- Opened and closed manually with VELUX control rods when out of reach.
- Smooth turning handle for when the skylight is installed within reach. (Sold separately)
- Pre-mounted Pick&Click!™ system brackets make the installation of sunscreen blinds a snap.

Please reference the price list for a full description of all sizes and glass options.

New Room darkening - double pleated blinds

Authentics Dynamics 1049 Peach Raspberry Cherise Yellow

New Light filtering - single pleated blinds

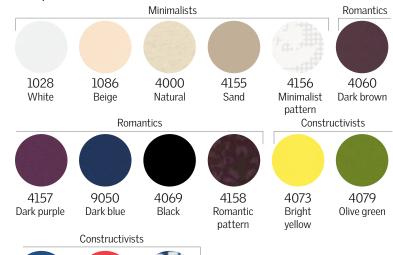
Solar powered or manual

Blackout blinds-flat


1272

Solar powered or manual

Blackout blinds-flat (cont.)


Solar powered or manual

Vegetals

Light filtering blinds-flat

Solar powered or manual

Venetian blinds

Manual only

7060 Passionate red Wenge wood

Note: Special order blinds ship separately from your skylight and please allow 2 weeks for delivery. *For more information visit: veluxusa.com/taxcredits


Factory installed blinds

Ten factory installed blinds are available to include in the purchase of your skylight. The solar powered blind uses its own independent, built-in solar panel and power system.

In-stock Room darkening - double pleated blinds (Solar powered/manual)

In-stock light filtering - single pleated blinds (Solar powered/manual)

In-stock venetian blind (Manual only)

Federal tax credit on solar powered blinds* 30% Available in room darkening - double pleated blinds, blackout blinds, light filtering - single pleated blinds

3 layers of protection

As with most of our skylights. This product carries the 10-year installation warranty.

^{*} For more information visit: veluxusa.com/taxcredits

Fixed skylights

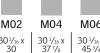
Deck mounted - FS Deck mounted replacement skylight series - FSR

The elimination of the drywall groove in this series allows for greater installation flexibility and more positioning options when replacing existing skylights.

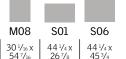
Benefits:

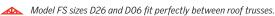
- Pre-finished white wood frame and protective aluminum or copper cladding.
- Integrated gaskets drain condensation to the outside.
- Streamlined exterior profile does not obstruct your roofline.
- Pre-mounted Pick&Click!™ system brackets make the installation of sunscreen blinds a snap.

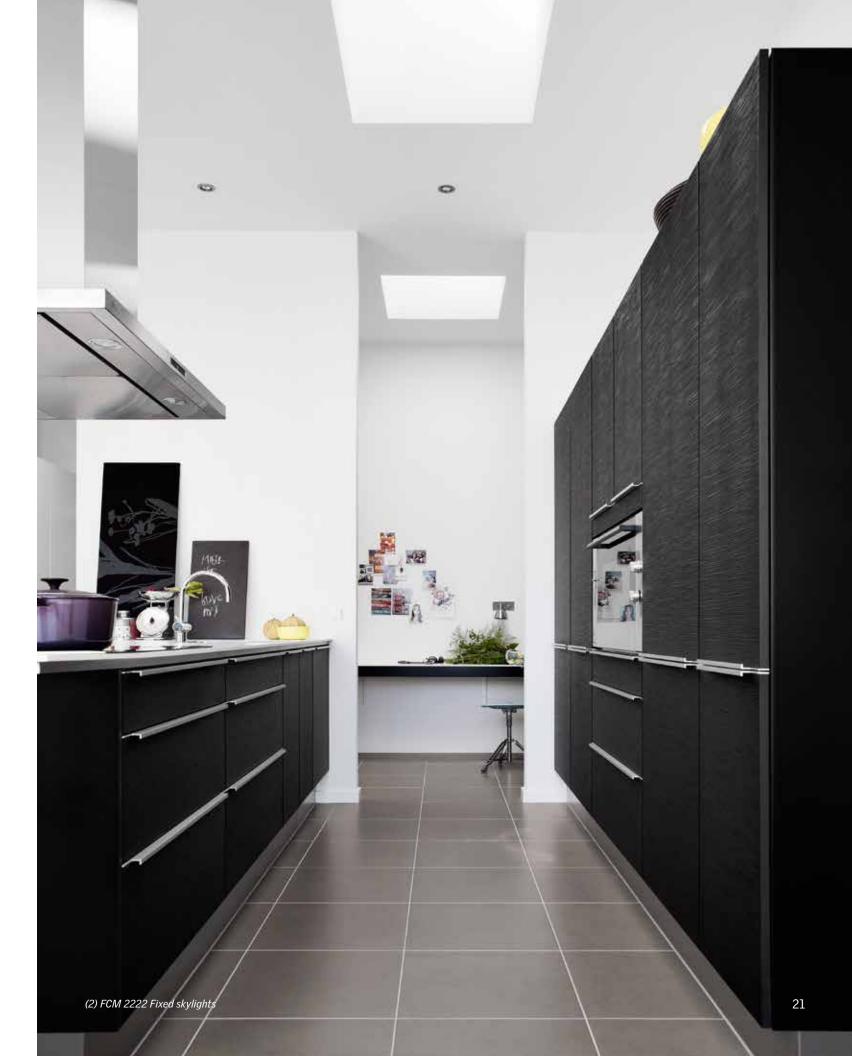
Note: In general the FSR, allows a finished opening variance of 2" on the width and height for an ideal fit where the front of the drywall will be under the white skylight frame. An additional 2" in width and height variance will allow the skylight to fit the opening but additional trim will be required.





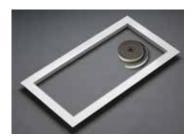






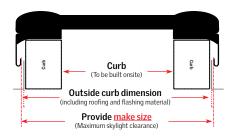
Model FSR	14° - 85° 3:12 - 137:12	D26	D06	M02	S06
Outside frame	$(W'' \times H'')$	23 1/4 x 23 7/16	23½x 46⅓	30 %16 x 30 1/2	44 ³ / ₄ x 46 ¹ / ₄
Rough opening	$(W'' \times H'')$	22 ½ x 22 ½/16	22 ¹ / ₂ x 45 ³ / ₄	30½16 x 30	44 ¹ / ₄ x 45 ³ / ₄
Ideal fit Width	$(W'' \times H'')$	211/8-223/8	211/8-223/8	28 1/2 - 29 3/4	42 3/8 - 44
Ideal fit Height	(W"×H")	211/2 - 223/4	441/4-451/2	281/2 - 293/4	441/4-451/2

Please reference the price list for a full description of all sizes and glass options.



Fixed skylights

Curb mounted - FCM



Accessory tray is required for blind installation.

Benefits:

- Integrated gaskets drain condensation to the outside.
- Streamlined exterior profile does not obstruct your roofline.
- A sunscreen accessory tray for standard site-built curbs allows for installation of VELUX Pick&Click!™ blinds

Custom size fixed curb mounted skylights - Custom FCM

Make size (W" x L")	Width 18 ³/4 To 50 ³/4
Height 18 ³ /4 To 72	Now delivered in 12 days or less
Height 72 1/4 To 76 1/2	Now delivered in 20 days or less

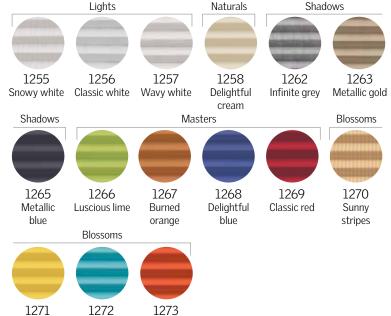
We require maximum skylight clearance dimensions in $\frac{1}{4}$ " increments $(0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4})$ for width and height.

Note: Custom size flashing kits and custom size blinds are not available.

Please call for pricing and availability. 1-800-888-3589

(2) FCM 2222 Fixed skylights

New Room darkening - double pleated blinds

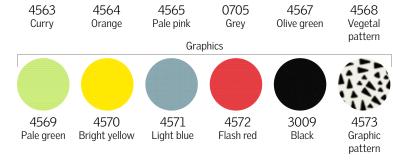

Authentics Basics Dynamics

1049 1159 1156 1051 1162 1160
Peach Brown Blue Raspberry Cherise Yellow

New Light filtering - single pleated blinds

Solar powered or manual

Blackout blinds-flat


Sunny yellow Sunny blue Sunny orange

Solar powered or manual

Blackout blinds-flat (cont.)

Solar powered or manual

Vegetals

Light filtering blinds-flat

Solar powered or manual

Constructivists

Venetian blinds

Manual only

7060 7061 Passionate red Wenge wood

Note: Special order blinds ship separately from your skylight and please allow 2 weeks for delivery.
*For more information visit: veluxusa.com/taxcredits

Factory installed blinds

Ten factory installed blinds are available to include in the purchase of your skylight. The solar powered blind uses its own independent, built-in solar panel and power system.

In-stock Room darkening - double pleated blinds (Solar powered/manual)

In-stock light filtering - single pleated blinds (Solar powered/manual)

	Lights		Naturals		Shadows	
į.			400			
ľ						
ı			1			,
1	FS00	FS01	FS31	FS32	FS33	
U	FH00	FH01	FH31	FH32	FH33	
a	White	Classic sand	Misty brown	Lovely latte	Shiny	
М					cappuccino	į

In-stock venetian blind (Manual only)

Barn

PA00

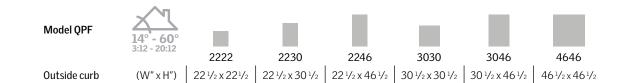
Federal tax credit on solar powered blinds*

Available in room darkening - double pleated blinds, blackout blinds, light filtering - single pleated blinds

* For more information visit: veluxusa.com/taxcredits

Quality construction

Pre-installed metal pan-flashing design for use with roofing sealant based installation.


Self-flashed skylight

Self-flashed - QPF

Benefits:

- Pre-finished white wood frame and protective aluminum exterior.
- Integrated gaskets drain condensation to the outside.
- Streamlined exterior profile does not obstruct your roofline.
- Pre-mounted Pick&Click!™ system brackets make the installation of sunscreen blinds a snap.

(2) QPF 3046 Fixed skylight Blind: 1705 Blackout blind

65 Over 65 special order blinds available Pages 28-3.

Room darkening - double pleated blinds

Double pleated blinds

Blackout cloth with honeycomb structure.

Energy efficient

Aluminum coating inside improves the insulation effect.

Sleek design
Neat pleats.

/ Easy installation
Installs in minutes with VELUX
Pick&Click!™ system.

Solar powered or manual

1160 1161 Yellow Orange

Federal tax credit on solar powered blinds*

Available in room darkening - double pleated blinds, blackout blinds, light filtering - single pleated blinds and light filtering blinds

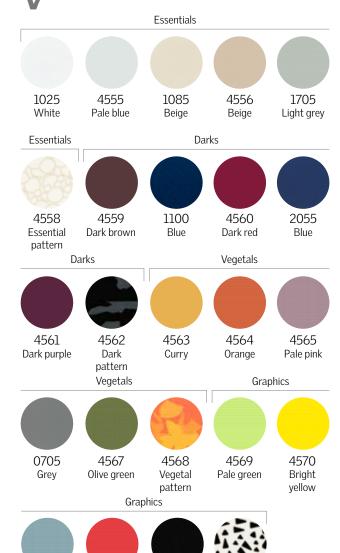
Note: Special order blinds ship separately from your skylight and please allow 2 weeks for delivery.

*For more information visit: veluxusa.com/taxcredits

Light filtering - single pleat blinds

Colorful light effects
Softens incoming light.

Solar powered or manual



Sunny stripes Sunny yellow Sunny blue Sunny orange

Blackout blinds - flat

Blackout 24/7
Blackout even when the sun is shining.

Solar powered or manual

4571

Light blue

4572

Flash red

3009

Black

4573

Graphic pattern

Light filtering blinds - flat

Basic privacy
Offers both protection and good looks.

Solar powered or manual

Venetian blinds

Complete light control

Control amount and direction of incoming light and shadows.

✓ Manual only

Federal tax credit on solar powered blinds*

Available in eoom darkening - double pleated blinds, blackout blinds, light filtering - single pleated blinds and light filtering blinds

Note: Special order blinds ship separately from your skylight and please allow 2 weeks for delivery.

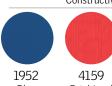
*For more information visit: veluxusa.com/taxcredits

New Room darkening - double pleated blinds

New Light filtering - single pleated blinds

Blackout blinds-flat

Essentials 4558 4555 1085 4556 1705 Pale blue Light grey Essential


Blackout blinds-flat (cont.)

Light filtering blinds-flat

Venetian blinds

Note: Special order blinds ship separately from your skylight and please allow 2 weeks for delivery. *For more information visit: veluxusa.com/taxcredits

Natural ventilation with a closed window

Let fresh air into your home even when you are away or sleeping, without having to worry about security or bad weather. Pull the unique top control bar once and you will allow fresh, filtered air to enter throught the ventilation flap.

White Polyurethane

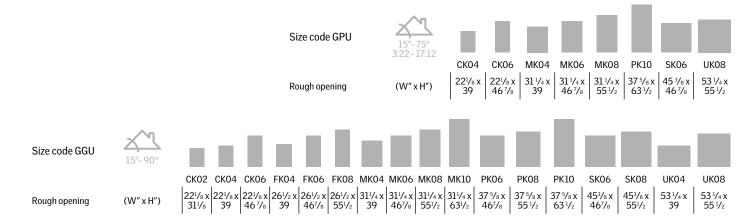
Perfect for contemporary interiors and white ceilings. The polyurethane mold has no visible joints, and therefore ensures a moisture resistant finish and requires less maintenance than lacquered natural pine.


More access to the outdoors

All our roof windows make it easier to gain access to the outdoors.

Roof windows

Top hinged roof window - GPU Center-pivot roof window - GGU



Center-pivot roof window - GGU

Benefits:

- Enjoy panoramic views While increasing your energy efficiency and natural ventilation.
- Greatly increase the amount of natural light in your rooms.
- Convenient bottom operation the perfect choice for loft conversions with windows in easy reach.
- GGU roof windows are only available for special order.
- Convenient even with furniture placed beneath the roof window.
- Easy to open and quick to close with the top control bar.
- Low installation allows for more flexibility and better views.

Roof windows

Roof access window - GXU

Benefits:

- Easy roof access for roof repairs, maintenance, emergency and egress (FK06).
- Locking device keeps sash in open position.
- Slim sash and frame appearance.
- Ventilation flap.
- Can be installed as a left hinged or right hinged roof access window.
- Pre-installed Pick&Clcik!™ brackets for easy blind installation.

Size code GXU CK06 Rough opening (W" x H") $22^{1}/8 \times 46^{7}/8$ 26 ½ x 46 1/8

Balcony roof window

Deck mounted - GDL CABRIO™

Benefits:

- Dual-sash operation.
- Features a select wood frame and sash coated with a clear finish and exterior aluminum.

PK19

Rough opening

 $(W'' \times H'')$

39 ³/₈ x 101

(3) PK19 GDL CABRIO™ skylight

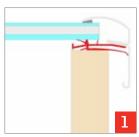

10-year installation warranty

Deck mounted - 3 layers of protection

Deck seal

The pre-attached deck seal on all deck mounted skylights provides a seal between the frame and roof deck for a leak-proof installation.

2 Adhesive underlayment


Adhesive underlayment for secondary water protection against the harshest weather conditions.

Engineered flashing for easy installation and primary water protection.

 $For \ complete \ information \ visit \ the no leak sky light. com.$

Curb mounted - 3 layers of protection

Pre-attached gasket

A pre-attached skylight gasket provides a seal between a standard site-built curb and the skylight that caps off a leak-proof installation for curb mounted skylights.

2 Adhesive underlayment

Adhesive underlayment for secondary water protection against the harshest weather conditions for standard site-built curbs.

Flashing

ECL shingle or ECW tile flashing must be purchased in order to qualify for the 10-year installation warranty.

Engineered flashing for easy installation and primary water protection.

For complete information visit thenoleakskylight.com.

The No Leak Skylight

• No Leak Promise • No Worries

110

Deck mounted flashing systems

Flashing must be purchased with skylights and installed properly to benefit from the No Leak warranty

Shingles/shakes - EDL

- Step flashing pieces interweave with roofing material for proper water drainage.
- Additional step pieces (ZZZ 200) are required for shakes and other thick roofing materials.

Note: Adhesive underlayment included in flashing kit

Combi applications*

- Type EKL works with groupings on low-profile roofing materials such as shingles and shakes.
- Type EKW works with groupings on high-profile roofing materials such as Spanish tile or corrugated metal roofing.

Note: VSS only available for side-by-side

Tile roofing - EDW

- Patented sill flashing features pliable pleats that form to most types of tile.
- Side and head flashing pieces form a gutter to direct water away from the skylight.

Note: Not available for VSS

Metal roofing - EDM

- Flashing pieces interlock with roofing material for a fast weather tight installation.
- Sill apron features pliable pleats that form to the roof.

Copper cladding and flashing

- Available for select deck mounted VELUX roof windows and skylights.
- Copper products are special order items and require varying lead-times. Call for more information.

Biepack flashing - ECB

- Used with site-built curb on low-sloped roofs.
- No bending of flashing required.
- Applied to 2 x 4 lumber and plywood.
- Download curb construction www.veluxusa.com

Curb mounted flashing systems

Flashing must be purchased with skylights and installed properly to benefit from the

No Leak warranty

Shingles/shakes - ECL

- Step flashing pieces interweave with roofing material for proper water drainage.
- Additional step pieces (ZZZ 200) are required for shakes and other thick roofing materials.

Note: Adhesive underlayment included in flashing kit.

Tile roofing - ECW

- Patented sill flashing features pliable pleats that form to most types of tile.
- Side and head flashing pieces form a gutter to direct water away from the skylight.

Note: Not available for VSS.

*EKL applications require 4" over-and-under spacing and 2.5" - 12" side-by-side spacing in ½" increments.

EKW applications require 4" over-and-under and side by side.

Roof window combi application is available as a special order with varying lead-times. 4" spacing is required for both over-and-under and side-by-side spacing.

Accessories

Accessories for all your skylight conveniences

Intelligent touch remote control (KLR 200)

Included with your solar or electric skylight is the Intelligent touch remote control powered by VELUX INTEGRA®. With the touch-sensitive screen and easily-understood icons, programing skylights has become simpler than ever. Size: 3 11/16" x 3 11/16"

Sunscreening accessory tray for fixed curb mounted skylights (ZZZ 199)

The sunscreening accessory tray combined with the revolutionary Pick&Click!™ system makes blind installation quick and easy for VELUX fixed curb mounted skylights. It has everything built-in.

Angle adapter for chain operator (ZZZ 203)

Extension for chain operator

(ZZZ 208)

Extension for manual crank handle or for the manual angle adapter to make the skylight easier to operate with a manual pole.

Extension for manual crank handle

or for the manual angle adapter to

make the skylight easier to operate.

Extension rods (ZCT 300, ZMT 300, ZCT 100, ZXT 200)

6' - 10' rod for operation of manual skylights (ZCT 300)

Available for models: VS, VCM

6' - 10' motorized rod for manual skylights

Available for models: VS, VCM

(ZMT 300)

3' extension for ZCT 300, ZMT 300, and ZXT 200 (ZCT 100)

Available for models: FS, VS, VCM, QPF

"7 hook" rod for new manual blinds (ZXT 200)

Available for models: FS, FCM, QPF

Trim kit with L parts (ZZZ 213)

Our skylight trim kit provides a clean interior finish with no trim work required when replacing older style roof windows and skylights.

Filler piece (ZZZ 213-B)

Trim groove filler pieces simplifies replacement of existing skylights

- Three 57¹/₂" pieces
- One kit works for most sizes

VS Crank handle (ZZZ 201) VCM Crank handle (ZZZ 212)

Manual crank handle to operate deck mounted venting skylights with a chain operator that are installed within reach and manufactured since 2010.

VS Replacement hooks (ZZZ 202) VCM Crank handle (ZZZ 211)

Available for manual venting skylights.

Sun screen accessory adapter kit (ZZZ 232)

Enables prior model skylights to be fitted with any of our current model blinds. Available as a special order. For models manufactured prior to January 1, 2010.

Structural brackets kit for oversize openings (ZZZ 219)

Structural mounting bracket for deck mounted skylights to be used in applications with an oversized rough opening. Bracket come in sets of four.

VELUX SUN TUNNEL™ skylights

Flat glass - TLR Curb metal flashing - TCR

Benefits:

- Low profile glass design creates sleek appearance on any roofline.
- Perfect for developments where local ordinances do not allow acrylic dome tubular skylights.
- Available in 14" rigid only.
- Prefabricated light tunnel makes it easy to install.

- One piece metal curb mounted flashing.
- Low profile dome acrylic or polycarbonate.
- Pivoting tunnel system.

Model TLR 014 $25^{3}/8 \times 30^{1}/2$ Outside flashing Rough opening (ceiling) 14 1/2 Rough opening (roof deck) $14^{1/2} \times 17^{3/4}$ Daylight area 138 Net wt (w/ acrylic) 29 Standard tubing kit length 48 Maximum recommended install 20

	X		
Model TCR	0° - 60° 0:12 - 20:12		014
Outside flashing		in.	$25^{3}/8 \times 30^{1}/2$
Rough opening (ceiling)		in.	141/2
Rough opening (roof deck))	in.	$14^{1/2} \times 17^{3/4}$
Daylight area		sq. in.	138
Net wt (w/ acrylic)		lbs.	29
Standard tubing kit length	1	in.	48
Maximum recommended length	install	ft.	20

VELUX SUN TUNNEL™ skylights

Rigid pitched - TMR Rigid low profile - TGR

- Pitched flashing provides optimum angle for gathering light from all roof directions.
- 10" tile flashing kit available. 14" and 22" tile flashings available for the TCR.
- Impact models available for hurricane prone areas.
- 99% silver reflective layer with a 20-year tunnel warranty, total reflectance 99%.

Model TMR	14° - 60° 3:12 - 20:12		010	014
Outside flashing		in.	27 x 27	29 x 30 1/2
Rough opening (ceiling)		in.	10 1/2	141/2
Rough opening (roof deck)		in.	$14^{1/2} \times 16$	14 ½ x 20
Daylight area		sq. in.	65	138
Net wt (w/ acrylic)		lbs.	20	29
Standard tubing kit length		in.	52*	52*
Maximum recommended inslength	stall	ft.	20	20

- Low profile flashing provides an integrated look with the roofline.
- Impact models available for hurricane prone areas.
- 99% silver reflective layer with a 20-year tunnel warranty, total reflectance 99%.

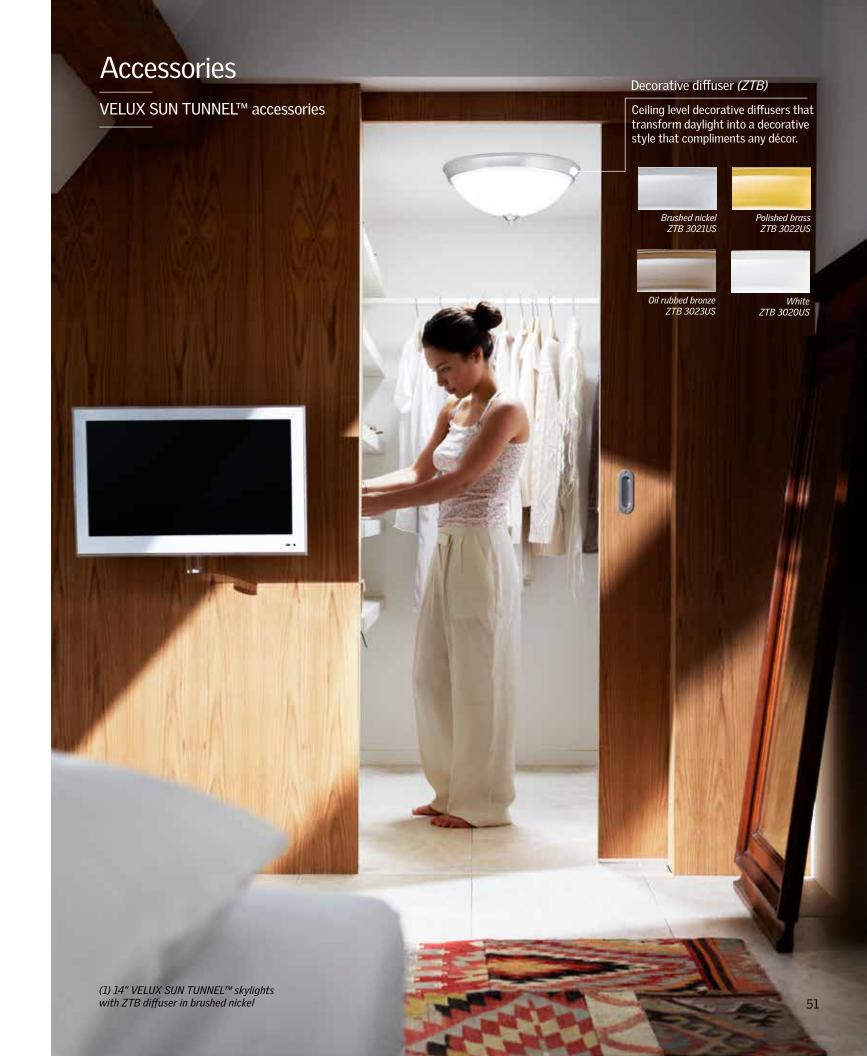
Model TGR	14° - 60° 3:12 - 20:12		010	014
Outside flashing		in.	24 ³ / ₄ x 24 ³ / ₄	29 x 29
Rough opening (ceiling)		in.	101/2	141/2
Rough opening (roof deck)		in.	$14^{1}/_{2} \times 14^{1}/_{2}$	$14^{1}/_{2} \times 18$
aylight area		sq. in.	65	138
let wt (w/ acrylic)		lbs.	20	29
standard tubing kit length		in.	52*	52*
Maximum recommended ins ength	tall	ft.	20	20

*Subtract approximately 6" for flashing when comparing to attic depth at point of installation.

VELUX SUN TUNNEL™ skylights

Flex pitched - TMF Flex low profile - TGF

Benefits:


- Pitched flashing provides optimum angle for gathering light from all roof directions.
- Tile flashing available.
- Impact models available for hurricane prone areas.

- Low profile flashing provides an integrated look with the roofline.
- Pivoting tunnel system and flexible tunnel for a quick and easy installation.
- Impact models available for hurricane prone areas.

Model TMF	14° - 60° 3:12 - 20:12		014
Outside flashing		in.	29 x 30 1/2
Rough opening (ceiling)		in.	141/2
Rough opening (roof deck)		in.	$14^{1/2} \times 20$
Daylight area		sq. in.	138
Net wt (w/ acrylic)		lbs.	26
Standard tubing kit length		in.	96
Maximum recommended in length	stall	ft.	8

Model TGF	14° - 60° 3:12 - 20:12		014	022
Outside flashing		in.	29 x 29	37 x 37
Rough opening (ceiling)		in.	14 1/2	221/2
Rough opening (roof deck)		in.	$14^{1/2} \times 18$	22 1/2 x 26
Daylight area		sq. in.	138	314
Net wt (w/ acrylic)		lbs.	24	36
Standard tubing kit length		in.	96	96
Maximum recommended in length	stall	ft.	8	12

Accessories

Energy kit (ZTC 0041US)

Designed to increase the energy efficiency of the VELUX SUN TUNNEL skylight and enables it to be ENERGY STAR® certified.

Daylight controller (ZTP) Power supply for controller (ZZZ 233)

Allows the user to control the amount of daylight that enters a room and perfect for rooms that require room darkening.

Power supply for VELUX SUN TUNNEL skylight light control devices.

Elbows (ZTE)

A durable and easy to operate elbow that can be used at the top, bottom, or middle of your installation. Multiple elbows can be joined together with rotating couplers to form a 90° degree bend or any configuration needed to maneuver around obstacles.

Rotating coupler (ZTZ 211)

Easy to install tunnel and elbow coupler that enables quick tunnel connections and a rotating joint to help align tunnel sections.

VELUX ZTL electric light kit (ZTL)

Tubular daylight fixture that uses a UL approved energy efficient compact florescent bulb (26 watts) especially designed for VELUX SUN TUNNEL skylights. Available for all models.

ZTK Blackout shade

Manually block the light coming through the SUN TUNNEL in seconds with a manual blackout blind.

Available for the 10" and 14" SUN TUNNEL skylights

Rigid tube

24" tunnel sections manufactured with the Flexi Loc™ tunnel connector system that reduces tunnel installation time in half and delivers the highest quality daylight into the space below.

Exterior fire band (ZZZ 192)

Fire band provides the dome edge protection needed for installation on Class B, and C rated roofs.

Tile flashing for 10" and 14" pitched SUN TUNNEL (ZTM)

Tile flashing accessory for pitched SUN TUNNEL skylights with painted malleable aluminum water diverting sheet.

Tile flashing for curb mounted SUN TUNNEL skylights (ECW)

A pliable, pleated, and proven curb mounted tile flashing system for VELUX curb mounted SUN TUNNEL skylights. Engineered flashing designed for tile roofing material.

Decorative diffuser

(ZTB)

Ceiling level decorative diffusers that transform daylight into a decorative style that compliments any décor.

shed nickel Polished brass TB 3021US ZTB 3022US

White ZTB 3020US

How to order

Choosing the right skylight for you

Choose the right location for your skylight

It's never been easier to choose the right location for your skylight than with our skylight planner app. Download the VELUX skylight planner app from the Apple store or Android market.

Choose the right skylight

"Fresh Air" skylights

Available options: VSS, VCS, VSE, VCE, VS, VCM, GPU, GGU, GXU, GDL CABRIO $^{\text{TM}}$

Fixed skylights

Available options: FS, FCM, QPF

SUN TUNNEL™ skylights

Available options: TLR, TCR, TMR, TGR, TMF, TGF

Choose a blind or accessory

Choose one of our in-stock factory installed blinds or choose from over 65 special order blinds (pages 28-31).

In-stock Room darkening - double pleated blinds

In-stock Light filtering - single pleated blinds

In-stock venetian blind (Manual)

Federal tax credit on solar powered blinds*

Available in Room darkening - double pleated blinds, blackout blinds, light filtering - single pleated blinds and light filtering blinds

Note: Special order blinds are not pre-installed with your skylight order and require a two week lead time. Special order blinds will ship separately.

Choose the right glass

For out of reach applications

Clean, Quiet & Safe glass (xx04) - recommended

Standard on: VSS, VCS, VSE, VCE Available on: VS, VCM, FS, FCM, QPF

Clean, Quiet & Safe glass also available in the following options:

Impact (xx06)

Available on: VSS, VSE, VCS, VCE, VS, VCM, FS, FCM, QPF

Miami-Dade (xx07) Available on: FCM

White laminated (xx08) Available on: VSE, VCE, VS, VCM, FS, FCM, QPF

Snowload (xx10)

Available on: VSE, VCE, VS, VCM, FS, FCM

For in reach applications

out of reach applications.

VELUX recommends and building codes require laminated glass for

Dual pane tempered glass (xx05)

Available on: FS, VS, FCM, VCM, QPF

Code compliance

VELUX offers a broad array of skylights and SUN TUNNEL skylights that meet the applicable performance requirements and testing and labeling standards written into the most current US Model Codes:

2015 IBC (International Building Code), 2015 IRC (International Residential Code), and 2015 IECC (International Energy Conservation Code),as well as local and regional codes that are the above (and earlier) codes.

In addition, electrical components built into VELUX products are UL listed.

Standard VELUX skylights and SUN TUNNEL products also meet or exceed applicable Powersmart requirements, in addition to those of the current and prior North American Fenestration Standards (NAFS) also known as AAMA/WDMA/CSA 101/I.S.2/A440, with one exception: copper-clad versions.

To verify these attainments on site, the products are shipped with all required labels to expedite the inspection and final acceptance process. VELUX confidently certifies through these labels that only products consistent with the tested specimens are sent to the job.

Need an installer?

Use our installer locator at veluxusa.com/installer.

Check with your local VELUX skylight dealer.

Contact VELUX Solutions at 1-866-358-3589.

We offer a Skylight Specialist program for local independent installers. A VELUX Skylight Specialist is:

Carefully screened by us.

Required to complete an extensive training program.

Provides the best solutions for your daylighting needs.

VELUX®

Testing data

VSE/VSS Technical Information									
Glass	04	06**	08	10	9994				
Air infiltration/exfiltration* [max. @ 75 Pa (1.57 lbs/ft²) differential pressure]									
l/s/m²	0.2	0.4	0.2	0.3	0.2				
cfm/ft²	0.03	0.07	0.03	0.06	0.03				
			L/m²/min (5 U al pressure with						
Pascals	720	720	720	720	720				
lbs/ft²	15	15	15	15	15				
	Thermal p	erformance (C	ertified, compl	ete unit values)					
			' slope and labe n the NFRC Ce						
U-Factor	0.42	0.40	0.42	0.41	0.37				
SHGC	0.23	0.23	0.22	0.23	0.23				
VT	0.53	0.52	0.39	0.52	0.52				
		UV pr	otection, %						
(300- 380 nm)	99.9	99.9	99.9	99.9	99.9				
	Fadi	ng protection,	% (Krochmanı	n damage funct	tion)				
(300- 600 nm)	83.1	84.6	88.4	83.2	85.1				
	Structura	Performance	[Performance	Grade or DP] *					
Tested Size			Uplift (lbs/ft²)						
S06	65	65	65	80	65				
M08	105	65	105	85	105				
C06	n.r.	n.r.	n.r.	90	n.r.				
Tested Size		D	ownload (lbs/ff	:2)					
S06	370	300	370	860	370				
M08	440	360	440	1090	440				
C06	n.r.	n.r.	n.r.	1200	n.r.				
* Tested in accordance with AAMA/WDMA/CSA 101/LS 2/A440-11 (NAES 2011)									

^{*} Tested in accordance with AAMA/WDMA/CSA 101/I.S.2/A440-11 (NAFS 2011)

Structural performance ratings also apply to sizes smaller than the Tested Size VSE and VSS skylights are WDMA Hallmark certified: Products 426-H-670, -678, -679, -682 (not applicable to copper-clad variants)

** 06 variant is tested and WDMA Hallmark certified for Wind-borne debris impact, in accordance with ASTM E 1886 and ASTM E 1996. Rated for Wind Zone 3, Missile Level C, Cycle Pressure +50/-50

04 glass: Tempered over laminated HS (0.030" interlayer)

06 glass: Tempered over laminated HS (0.090" interlayer)

08 glass: Same as 04, with white interlayer

10 glass: Tempered over laminated Tempered (0.030" interlayer) 9994 glass: Same as 04, with i89 coating on interior surface

	VS	Technical	l Informat	ion					
04	05	06**	08	10	9993	9994			
filtration/ex	filtration*	[max. @ 7	5 Pa (1.57	lbs/ft²) diffe	erential pre	ssure]			
0.2	0.5	0.4	0.2	0.3	0.5	0.2			
0.03	0.09	0.07	0.03	0.06	0.09	0.03			
720	720	720	720	720	720	720			
15	15	15	15	15	15	15			
Therm	al perform	ance (Cer	tified, com	plete unit va	alues)				
0.42	0.43	0.40	0.42	0.41	0.38	0.37			
0.23	0.23	0.23	0.22	0.23	0.23	0.23			
0.53	0.54	0.52	0.39	0.52	0.52	0.52			
		UV prot	ection, %						
99.9	95.2	99.9	99.9	99.9	95.3	99.9			
	Fading pro	otection, %	(Krochma	ınn damage	function)				
83.1	79.2	84.6	88.4	83.2	81.6	85.1			
Structural Performance [Performance Grade or DP] *									
		U	plift (lbs/f	t²)					
65	90	65	65	80	90	65			
105	120	65	105	85	120	105			
n.r.	n.r.	n.r.	n.r.	90	n.r.	n.r.			
		Dov	vnload (lbs	/ft²)					
370	300	300	370	860	300	370			
440	400	360	440	1090	400	440			
n.r.	n.r.	n.r.	n.r.	1200	n.r.	n.r.			
* Tested in accordance with AAMA/WDMA/CSA 101/I.S.2/A440-11 (NAFS 2011 Structural performance ratings also apply to sizes smaller than the Tested Size VS skylights are WDMA Hallmark certified: Products 426-H-670, -678, -679, -682 (not applicable to copper-clad variants)						d Size VS			
impact, in	accordanc	ce with AS	TM E 188	6 and ASTI	M E 1996.				
04 glas	s: Tempere	ed over lam	inated HS	(0.030" inte	erlayer)				
	05 gla	ss: Temper	ed over ter	npered					
06 glass: Tempered over laminated HS (0.090" interlayer)									
06 glas	s: rempere	08 glass: Same as 04, with white interlayer							
(08 glass: S	ame as 04	, with whit						
	filtration/ex 0.2 0.03 Wat Ima 720 15 Therm ass Skyligh SHGC, and 0.42 0.23 0.53 99.9 83.1 Struct 65 105 n.r. 370 440 n.r. in accordan li performar are WDMA cable to col variant is to impact, in Rated for W	filtration/exfiltration* 0.2	filtration/exfiltration* [max. @ 7.0.2 0.5 0.4 0.03 0.09 0.07 Water resistance @ 3.4 L [max. tested differential] 720 720 720 15 15 15 15 15 15 Thermal performance (Cerass Skylights are rated at 20° s SHGC, and VT ratings listed in 0.42 0.43 0.40 0.23 0.23 0.23 0.23 0.53 0.54 0.52 UV protemple of the performance of	filtration/exfiltration* [max. @ 75 Pa (1.57 0.2 0.5 0.4 0.2 0.03 0.09 0.07 0.03 Water resistance @ 3.4 L/m²/min (5 [max. tested differential pressure w 720 720 720 720 15 15 15 15 15 15 15 15 15 15 15 15 15	filtration/exfiltration* [max. @ 75 Pa (1.57 lbs/ft²) differential pressure with no leaked and provided in the NFRC Certified provided in the NFRC Certifie	Filtration/exfiltration* [max. @ 75 Pa (1.57 lbs/ft²) differential pre 0.2			

9994 glass: Same as 04, with i89 coating on interior surface

		FS	Technical	Informati	on				
Glass	04	05	06**	08	10	9993	9994		
Air infiltration/exfiltration* [max. @ 75 Pa (1.57 lbs/ft²) differential pressure]									
l/s/m²	0.1	0.7	0.1	0.1	0.1	0.7	0.1		
cfm/ft²	0.01	0.14	0.01	0.01	0.01	0.14	0.01		
			ce @ 3.4 L, lifferential p						
Pascals	720	720	720	720	720	720	720		
lbs/ft²	15	15	15	15	15	15	15		
	Therr	nal perforn	nance (Cert	tified, comp	olete unit va	alues)			
			ed at 20° sl is listed in t						
U-Factor	0.44	0.45	0.42	0.44	0.42	0.39	0.38		
SHGC	0.26	0.26	0.26	0.25	0.26	0.26	0.26		
VT	0.60	0.61	0.60	0.44	0.60	0.60	0.60		
			UV	protection	, %				
(300- 380 nm)	99.9	95.2	99.9	99.9	99.9	95.3	99.9		
		Fading pr	otection, %	(Krochma	nn damage	function)			
(300- 600 nm)	83.1	79.2	84.6	88.4	83.2	81.6	85.1		
	Stru	ctural Perfo	rmance [P	erformance	e Grade or I	DP] *			
Tested Size			U	plift (lbs/ft	²)				
S06	70	45	65	70	65	45	70		
M08	105	90	120	105	100	90	105		
C06	n.r.	n.r.	n.r.	n.r.	65	n.r.	n.r.		
Tested Size			Dov	vnload (lbs/	/ft²)				
S06	160	400	300	160	720	400	160		
M08	350	400	300	350	1180	400	350		
C06	n.r.	n.r.	n.r.	n.r.	1250	n.r.	n.r.		
Structural skylights a - 694 (not a ** 06 v	performa re WDMA applicable ariant is t impact, ir	nce ratings A Hallmark to copper ested and a accordance	AMA/WDI s also apply certified: P -clad varial WDMA Ha ce with AS 3, Missile L	to sizes si Products 4: nts) Ilmark cert TM E 1886	maller than 26-H-669, ified for W 5 and ASTI	the Teste -672, -679 /ind-borne M E 1996.	d Size FS 5, -680 debris		
	04 gla	ss: Temper	ed over lam	inated HS ((0.030" inte	erlayer)			
		05 gla	ss: Temper	ed over ten	npered				
	06 gla	ss: Tempere	ed over lam	inated HS ((0.090" inte	erlayer)			
		08 glass: S	ame as 04	, with whit	e interlayer				
	10 glass: ⁻	Tempered o	ver laminat	ed Temper	ed (0.030"	interlayer)			
	9993 gla	ass: Same a	ıs 05 , with	i89 coating	g on interio	r surface			
	0004		- 04:41-	:001:	on interio	•			

	VC	E /VCS Techn	ical Informati	on					
Glass	04	06**	08	10	9994				
Air infiltration/exfiltration* [max. @ 75 Pa (1.57 lbs/ft²) differential pressure]									
l/s/m²	0.1	0.1	0.1	<0.1	0.1				
cfm/ft²	0.02	0.01	0.02	<0.01	0.02				
			/m²/min (5 USo pressure with r						
Pascals	720	720	720	720	720				
lbs/ft²	15	15	15	15	15				
	Thermal perf	ormance (Cer	tified, complete	e unit values)					
VELUX Glass U-Factor, SH	Skylights are GC, and VT ra	rated at 20° s tings listed in	lope and labele the NFRC Cert	ed with NFRC- ified Products	certified Directory				
U-Factor	0.53	0.50	0.53	0.51	0.48				
SHGC	0.24	0.24	0.23	0.24	0.23				
VT	0.55	0.54	0.40	0.54	0.54				
		l	IV protection, 9	%					
(300-380 nm)	99.9	99.9	99.9	99.9	99.9				
	Fadi	ng protection,	% (Krochmanr	n damage func	tion)				
(300-600 nm)	83.1	84.6	88.4	83.2	85.1				
	Structural P	erformance [F	erformance Gr	ade or DP] *					
Tested Size			Uplift (lbs/ft²)						
4646	45	60	45	40	45				
2246	n.r.	n.r.	n.r.	65	n.r.				
Tested Size		De	ownload (lbs/fl	t²)					
4646	230	230	230	620	230				
2246	n.r.	n.r.	n.r.	1150	n.r.				
* Tested in a	ccordance wit	h AAMA/WDI	MA/CSA 101/I	.S.2/A440-11	(NAFS 201				
Ctructural	rformanoo ===	inge aleo anni	, to sizes small	or than the To	ctad Ciza				

Structural performance ratings also apply to sizes smaller than the Tested Size VCE and VCS skylights are WDMA Hallmark certified: Products 426-H-695, -696, -697, -698

** 06 variant is tested and WDMA Hallmark certified for Wind-borne debris impact, in accordance with ASTM E 1886 and ASTM E 1996. Rated for Wind Zone 3, Missile Level C, Cycle Pressure +50/-50

04 glass: Tempered over laminated HS (0.030" interlayer)

06 glass: Tempered over laminated HS (0.090" interlayer)

08 glass: Same as 04, with white interlayer

10 glass: Tempered over laminated Tempered (0.030" interlayer)

9994 glass: Same as 04, with i89 coating on interior surface

600 nm)							85.1			
Structural Performance [Performance Grade or DP] *										
Tested Size	Uplift (lbs/ft²)									
S06	70	45	65	70	65	45	70			
M08	105	90	120	105	100	90	105			
C06	n.r.	n.r.	n.r.	n.r.	65	n.r.	n.r.			
Tested Size	Download (lbs/ft²)									
S06	160	400	300	160	720	400	160			
		400	300	350	1180	400	350			
M08	350	400	500	550	1100	400				
CO6 * Tested i Structural skylights a -694 (not	n.r. n accordar performa are WDMA applicable	n.r. nce with A nce ratings Hallmark to copper	n.r. AMA/WDI s also apply certified: F -clad varia	n.r. MA/CSA 1 / to sizes s Products 4 nts)	1250 01/I.S.2/A-maller than 26-H-669,	n.r. 440-11 (NA the Tester -672, -675	l Size FS 5, -680			
CO6 * Tested i Structural skylights a -694 (not	n.r. n accordar performa are WDMA applicable variant is t impact, in	n.r. nce with A nce ratings Hallmark to copper ested and	n.r. AMA/WDI s also apply certified: F -clad varia WDMA Ha ce with AS	n.r. MA/CSA 1 / to sizes s Products 4 nts) Ilmark cer TM E 188	1250 01/I.S.2/Admaller than 26-H-669,	n.r. 440-11 (NA the Tester -672, -675 /ind-borne M E 1996.	AFS 2011) I Size FS 5, - 680 debris			
CO6 * Tested i Structural skylights a -694 (not	n.r. n accordar performa are WDMA applicable variant is t impact, in kated for V	n.r. nce with A nce ratings Hallmark to copper ested and accordan Vind Zone	n.r. AMA/WDI s also apply certified: F -clad varia WDMA Ha ce with AS 3, Missile I	n.r. MA/CSA 1 / to sizes s Products 4 nts) Illmark cer TM E 188 Level C, Cy	1250 01/I.S.2/A-maller than 26-H-669, tified for W 6 and ASTI ccle Pressu (0.030" inte	n.r. 440-11 (NA the Tester -672, -679 /ind-borne M E 1996. re +50/-50	AFS 2011) I Size FS 5, - 680 debris			
CO6 * Tested i Structural skylights a -694 (not	n.r. n accordar performa are WDMA applicable variant is t impact, in eated for V	n.r. nce with A nce ratings thallmark to copper ested and accordant Vind Zone ss: Tempero	n.r. AMA/WDI s also apply certified: F -clad varia WDMA Ha ce with AS 3, Missile I ed over lam ass: Temper	n.r. MA/CSA 1 to sizes s products 4 nts) Ilmark cer TM E 188 Level C, Cy inated HS	1250 01/I.S.2/A-maller than 26-H-669, tified for W 6 and ASTI vole Pressu (0.030" inte	n.r. 440-11 (NA the Tested -672, -675 /ind-borne M E 1996. re +50/-50 erlayer)	AFS 2011) I Size FS 5, - 680 debris			
CO6 * Tested i Structural skylights a -694 (not	n.r. n accordar performa are WDMA applicable variant is t impact, in ated for V 04 glas	n.r. nce with A nce rating: Hallmark to copper ested and accordant Vind Zone ss: Tempere 05 gla	n.r. AMA/WDI s also apply certified: F -clad varia WDMA Ha ce with AS 3, Missile ed over lam ass: Temper ed over lam	n.r. MA/CSA 1 to sizes s roducts 4 nts) Ilmark cer TM E 188 Level C, Cy inated HS ed over ter inated HS	1250 01/I.S.2/A-maller than 26-H-669, tified for W 6 and ASTI vole Pressu (0.030" inter inpered (0.090" inter	n.r. 440-11 (NA the Tester -672, -675 /ind-borne M E 1996. re +50/-50 erlayer)	AFS 2011) I Size FS 5, - 680 debris			
CO6 * Tested i Structural skylights a -694 (not	n.r. n accordar performa are WDMA applicable variant is t impact, in tated for V 04 glas	n.r. nce with A nce ratings I Hallmark to copper ested and accordant Vind Zone 05 gla ss: Tempere 08 glass: S	n.r. AMA/WDI s also apply certified: F -clad varia WDMA Ha se with AS 3, Missile ed over lam ass: Temper ed over lam same as 04	n.r. MA/CSA 1 to sizes s Products 4 nts) Illmark cer TM E 188 Level C, Cy inated HS ed over ter inated HS , with whith	1250 01/I.S.2/A- maller than 26-H-669, tified for W 6 and ASTI ccle Pressu (0.030" inte mpered (0.090" inte te interlayer	n.r. 440-11 (NA h the Tester -672, -679 /ind-borne M E 1996. re +50/-50 erlayer)	AFS 2011) I Size FS 5, - 680 debris			
CO6 * Tested i Structural skylights a -694 (not	n.r. n accordar performa are WDMA applicable variant is t impact, in lated for V 04 glas	n.r. nce with A nce ratings Hallmark to copper ested and accordan Vind Zone 05 gla sss: Tempere 08 glass: S Fempered o	n.r. AMA/WDI s also apply certified: F- clad varia WDMA Ha ce with AS, 3, Missile led over lam ass: Temper ed over lam same as 04 over lamina	n.r. MA/CSA 1 y to sizes s rroducts 4 nts) Ilmark cer TM E 188 Level C, Cy inated HS ed over ter inated HS y, with whit	1250 01/I.S.2/A-maller than 26-H-669, tified for W 6 and ASTI vole Pressu (0.030" inter inpered (0.090" inter	n.r. 440-11 (NA the Testee -672, -675 /ind-borne M E 1996. re +50/-50 erlayer) erlayer)	AFS 2011) I Size FS 5, - 680 debris			

Testing data

VCM Technical Information										
Glass	04	05	06**	08	10	9993	9994			
Air inf	infiltration/exfiltration* [max. @ 75 Pa (1.57 lbs/ft²) differential pressure]									
l/s/m²	0.1	<0.1	0.1	0.1	<0.1	<0.1	0.1			
cfm/ft²	0.02	<0.01	0.01	0.02	<0.01	<0.01	0.02			
Water resistance @ 3.4 L/m²/min (5 USgal/ft²/hr) * [max. tested differential pressure with no leakage]										
Pascals	720	720	720	720	720	720	720			
lbs/ft²	15	15	15	15	15	15	15			
	Thern	nal perform	nance (Cert	tified, com	plete unit v	alues)				
	VELUX Glass Skylights are rated at 20° slope and labeled with NFRC-certified U-Factor, SHGC, and VT ratings listed in the NFRC Certified Products Directory									
U-Factor	0.53	0.53	0.50	0.53	0.51	0.48	0.48			
SHGC	0.24	0.24	0.24	0.23	0.24	0.23	0.23			
VT	0.55	0.56	0.54	0.40	0.54	0.54	0.54			
			UV	protection	ı, %					
(300- 380 nm)	99.9	95.2	99.9	99.9	99.9	95.3	99.9			
		Fading pro	otection, %	(Krochma	ınn damage	function)				
(300- 600 nm)	83.1	79.2	84.6	88.4	83.2	81.6	85.1			
	Struc	ctural Perfo	ormance [P	erformanc	e Grade or I	DP] *				
Tested Size			U	plift (lbs/f	t²)					
4646	45	30	60	45	40	30	45			
2246	n.r.	n.r.	n.r.	n.r.	65	n.r.	n.r.			
Tested Size	Download (lbs/ft²)									
4646	230	230	230	230	620	230	230			
2246	n.r.	n.r.	n.r.	n.r.	1150	n.r.	n.r.			
* Tested in accordance with AAMA/WDMA/CSA 101/I.S.2/A440-11 (NAFS 2011)										
Structural performance ratings also apply to sizes smaller than the Tested Size VCM skylights are WDMA Hallmark certified: Products 426-H-695, -696, -697, -698										
** 06 variant is tested and WDMA Hallmark certified for Wind-borne debris impact, in accordance with ASTM E 1886 and ASTM E 1996. Rated for Wind Zone 3, Missile Level C, Cycle Pressure +50/-50										
04 glass: Tempered over laminated HS (0.030" interlayer)										

05 glass: Tempered over tempered

06 glass: Tempered over laminated HS (0.090" interlayer)

08 glass: Same as 04, with white interlayer

10 glass: Tempered over laminated Tempered (0.030" interlayer)

9993 glass: Same as 05, with i89 coating on interior surface

9994 glass: Same as 04, with i89 coating on interior surface

FCM Technical Information								
Glass	04	05	06**	08	10	9993	9994	
Air infiltration/exfiltration* [max. @ 75 Pa (1.57 lbs/ft²) differential pressure]								
l/s/m²	0.2	<.1	<.1	0.2	0.1	<.1	0.2	
cfm/ft²	0.03	<0.01	<0.01	0.03	0.01	<0.01	0.03	
Water resistance @ 3.4 L/m²/min (5 USgal/ft²/hr) * [max. tested differential pressure with no leakage]								
Pascals	720	720	720	720	720	720	720	
lbs/ft²	15	15	15	15	15	15	15	
	Therr	nal perform	ance (Cer	tified, com	olete unit v	alues)		
		nts are rate d VT rating						
U-Factor	048	0.49	0.46	0.48	0.47	0.43	0.43	
SHGC	0.27	0.27	0.27	0.26	0.27	0.25	0.25	
VT	0.63	0.64	0.62	0.46	0.62	0.57	0.57	
			UV	protection	, %			
(300- 380 nm)	99.9	95.2	99.9	99.9	99.9	95.3	99.9	
		Fading pro	otection, %	(Krochma	nn damage	function)		
(300- 600 nm)	83.1	79.2	84.6	88.4	83.2	81.6	85.1	
	Struc	ctural Perfo	rmance [P	erformanc	e Grade or	DP] *		
Tested Size			U	plift (lbs/ft				
4646	120	140	80	120	135	140	120	
2270	100	n.r.	n.r.	100	n.r.	n.r.	100	
Tested Size			Dov	vnload (lbs	/ft²)			
4646	250	100	100	250	970	100	250	
2270	200	n.r.	n.r.	200	n.r.	n.r.	200	
* Tested in accordance with AAMA/WDMA/CSA 101/I.S.2/A440-11 (NAFS 2011) Structural performance ratings also apply to sizes smaller than the Tested Size FCM skylights are WDMA Hallmark certified: Products 426-H-671, -701, -702, -703								
** 06 variant is tested and WDMA Hallmark certified for Wind-borne debris impact, in accordance with ASTM E 1886 and ASTM E 1996. Rated for Wind Zone 3, Missile Level C, Cycle Pressure +50/-50								
04 glass: Tempered over laminated HS (0.030" interlayer)								
05 glass: Tempered over tempered								
06 glass: Tempered over laminated HS (0.090" interlayer)								
08 glass: Same as 04, with white interlayer								
10 glass: Tempered over laminated Tempered (0.030" interlayer)								
9993 glass: Same as 05, with i89 coating on interior surface								
9994 glass: Same as 04, with i89 coating on interior surface								
Note: The	FCM 4646 C	0007 (or sma	ller) is the on	ly VELUX sk	ylight qualifi	ed for use in	the Florida	

HVHZ (High Velocity Hurricane Zone). See Miami-Dade NOA No. 12-0223.14

QPF Technical Information									
Glass	04	05	06**	08	9993	9994			
Air infil	tration/exfilt	ration* [max	ı. @ 75 Pa (1	57 lbs/ft²) (differential p	ressure]			
l/s/m²	0.5	0.3	0.4	0.5	0.3	0.5			
cfm/ft²	0.09	0.06	0.08	0.09	0.06	0.09			
			3.4 L/m²/mi ential pressu						
Pascals	580	720	720	580	720	580			
lbs/ft²	12	15	15	12	15	12			
	Thermal	performance	(Certified,	complete un	it values)				
	ss Skylights HGC, and V								
l-Factor	0.44	0.45	0.42	0.44	0.40	0.39			
SHGC	0.24	0.24	0.24	0.24	0.24	0.24			
VT	0.56	0.57	0.55	0.41	0.55	0.55			
			UV prote	ection, %					
00-380 nm)	99.9	95.2	99.9	99.9	95.3	99.9			
	Fa	ading protec	tion, % (Kro	chmann dan	nage functior	1)			
00-600 nm)	83.1	79.2	84.6	88.4	81.6	85.1			
	Structur	al Performar	nce [Perform	nance Grade	or DP] *				
Tested Size			Uplift (lbs/ft²)					
4646	80	80	100	80	80	80			
Tested Size			Download	d (lbs/ft²)					
4646	320	300	300	320	300	320			
Tested in	accordance	with AAMA	/WDMA/CS	SA 101/I.S.2	:/A440-11 (N	NAFS 2011)			
	performance nts are WDM								
	nt is tested a dance with A N	ASTM E 188		E 1996. Ra	ted for Wind				
	04 glass:	Tempered ov	er laminated	HS (0.030"	interlayer)				
05 glass: Tempered over tempered									
	06 glass: Tempered over laminated HS (0.090" interlayer)								
	08	glass: Same	as 04 , with	white interla	ayer				

9993 glass: Same as 05, with i89 coating on interior surface

9994 glass: Same as 04, with i89 coating on interior surface

SUN TUNNEL™ skylights Technical Information*										
Model	TLR	TSR	TCR	TGF	TGR	TMF	TMR			
Air infiltration/exfiltration* [max. @ 75 Pa (1.57 lbs/ft²) differential pressure]]										
l/s/m²	0.2 (Fixed)	0.3 (A3)	0.5 (A3)	0.2 (Fixed)						
cfm/ft²	.03	.05	.09	.04						
Water resistance @ 3.4 L/m²/min (5 USgal/ft²/hr)* [max. tested differential pressure with no leakage]										
Pascals (Pa)	720	720	720	720						
lbs/ft² (psf)	15	15	15		1	5				
	Therm	al performa	nce (Certif	ied, complet	e unit value	s)				
VELUX SUN T a	UNNEL™ sky nd SHGC ra						at ceiling			
		U-factor: Bt	tu/[hr*ft²*F	°] and (W/[ı	m²*K°])					
Base Model	.61 (3.46)	.38 (2.16)	n.r.	.50 (2.84) n.r50 (2.84) n.r.						
w/ Energy kits	n.r.	n.r.	.38 (2.16)	.37 (2.10)	.38 (2.16)	.37 (2.10)	.38 (2.1			
SHGC:	US and (Car	nadian) ratin	igs shown fo	r models wi	th EO and (E	E1) energy k	its			
Base model	.44	.37	n.r.	.21	n.r.	.21	n.r.			
w/ Energy kits	n.r.	n.r.	.25 (0.36)	n.r. (0.21)	.25 (0.37)	n.r. (0.21)	.25 (0.3			
Structı	ıral Perform		ormance Gr ote: 1 psf =		n psf: NAFS	-11 (NAFS-0)8)			
Dome Type:**		Uplift (negative)								
Acrylic or Polycarbonate	NA 240 (155) Acrylic 165 (125) 125 (90)									
Temp. Glass	n.r. (170) NA									
Dome Type:**	Download (positive)									
Acrylic or Polycarbonate	NA									
Temp. Glass	n.r. (250) NA									
* Tested VELUX SUN T						1 (NAFS 20 ated above a				

(See www.wdma.com, Hallmark Nos. 426-H-626, -693, -705, -706)

roducts with Polycarbonate domes are tested for Wind-borne debris impact and pressu ling in accordance with ASTM E 1886-05 and ASTM E 1996-05. Rated for Wind Zone Missile Level C, Cycle Pressure +50/-50

NOTICE: ALL GLASS MAY BE SUBJECT TO UNEXPECTED AND SPONTANEOUS BREAKAGE in rare circumstances due to imperfections in the glass that are undetectable during the manufacturing and inspection process by the manufacturer of the glass and VELUX.

 $\textit{VELUX America Inc. offers the choice of laminated or tempered glass \textit{skylights}.}$ Miami-Dade glass, impact glass and comfortplus glass are all types of laminated glass. Comfort glass is a type of tempered glass. Laminated glass is a combination of two or more glass sheets with one or more interlayers of plastic (PVB). In case of breakage, the interlayer is designed to hold the fragments together. Tempered glass does not contain an interlayer to hold the fragments together. Instead, tempered glass is designed to break into small, pebble-like pieces. When tempered glass breaks, pieces of glass come loose and may strike an individual.

CONSULT LOCAL REGULATIONS AND/OR BUILDING MATERIAL CONSULTANTS TO DETERMINE WHICH TYPE OF GLASS IS RIGHT FOR YOU OR IF LAMINATED GLASS OR GLASS RETENTION SCREENING IS REQUIRED IN YOUR APPLICATION.

Testing data notes

a) Production samples structurally tested and labeled in accordance with one or more of: AAMA/WDMA/CSA 101/I.S.2/A440, TAS201, 202, and 203; OSHA regulations; various ASTM methods.

b) Thermal and optical performance data are determined for skylights at 20 degree slope, and verified in accordance with NFRC procedures (where applicable) by accredited entities.

Most VELUX products are listed in the NFRC Certified Products Directory, and carry appropriate labels in accordance with NFRC's certification program. NFRC ID: VEL-N-xxx

c) Most variants have achieved WDMA Hallmark certification under No. 426-H, and/or recognition under Uniform-ES report #ER 0199 (IAPMO-ES).

In addition, Florida and TDI have listed most variants in their product evaluation/approval systems, and the FCM 07 is covered by Miami-Dade NOA #12-0233.14.

VELUX America Inc. 450 Old Brickyard Road P0 Box 5001 Greenwood, SC 29648-5001 Tel 1-800-888-3589 Fax 1-864-943-2631 veluxusa.com

www.twitter.com/veluxamerica www.youtube.com/veluxusa

Bringing light to life.